Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37548590

RESUMO

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Assuntos
Interferons , Metiltransferases , Animais , Camundongos , Interferons/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA de Cadeia Dupla
2.
Front Oncol ; 12: 840046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707351

RESUMO

The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.

3.
Leukemia ; 36(7): 1769-1780, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490198

RESUMO

RUNX3 is a transcription factor dysregulated in acute myeloid leukemia (AML). However, its role in normal myeloid development and leukemia is poorly understood. Here we investigate RUNX3 expression in both settings and the impact of its dysregulation on myelopoiesis. We found that RUNX3 mRNA expression was stable during hematopoiesis but decreased with granulocytic differentiation. In AML, RUNX3 mRNA was overexpressed in many disease subtypes, but downregulated in AML with core binding factor abnormalities, such as RUNX1::ETO. Overexpression of RUNX3 in human hematopoietic stem and progenitor cells (HSPC) inhibited myeloid differentiation, particularly of the granulocytic lineage. Proliferation and myeloid colony formation were also inhibited. Conversely, RUNX3 knockdown did not impact the myeloid growth and development of human HSPC. Overexpression of RUNX3 in the context of RUNX1::ETO did not rescue the RUNX1::ETO-mediated block in differentiation. RNA-sequencing showed that RUNX3 overexpression downregulates key developmental genes, such as KIT and RUNX1, while upregulating lymphoid genes, such as KLRB1 and TBX21. Overall, these data show that increased RUNX3 expression observed in AML could contribute to the developmental arrest characteristic of this disease, possibly by driving a competing transcriptional program favoring a lymphoid fate.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
4.
Sci Rep ; 12(1): 1243, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075235

RESUMO

RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células Eritroides , Eritropoese , Células Cultivadas , Humanos , Células-Tronco
5.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378673

RESUMO

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Assuntos
Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Apoptose , Autorrenovação Celular , Modelos Animais de Doenças , Fator de Transcrição GATA2/antagonistas & inibidores , Fator de Transcrição GATA2/metabolismo , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...